Beyond the Standard Model

on the lattice

Simon Catterall Syracuse U.

м

Current and past research USQCD/LQCD:

 Searching for viable technicolor theories for electroweak symmetry breaking

- Lattice supersymmetry
 - □ Formulations with exact SUSY
 - □ Use of DWF to study N=1 SYM

Technicolor – basic idea

- Dispense with elementary Higgs in SM
- Assume new (techni)-fermions carrying EW quantum numbers
- New strong force causes condensation

$$\langle \overline{Q}Q \rangle = \Lambda_{TC}^3 = O(250 GeV)^3$$

Goldstones from breaking chiral symmetries eaten to produce massive M_W,Z

Advantages

- No fine tuning Higgs mass $m_H \sim O(\Lambda)$
- No triviality problem $\lambda \rightarrow 0 \ \Lambda \rightarrow \infty$
- EW scale naturally small if asymptotically free

BUT

What gauge group, number flavors, representation?

м

Problems ...

- Scaled up QCD ($\Lambda_{OCD} \rightarrow \Lambda_{TC}$) impossible
 - precision electroweak measurements at LEP would have seen it
 - \Box To give masses to SM fermions need to couple to techniquarks in ETC theory at scale \varLambda_{ETC}
 - □ Energies $E<\Lambda_{ETC}$ → 4-fermion ops → SM mass terms after techniquarks condense.
 - □ Absence of FCNC → large Λ_{ETC} but then SM fermion masses too small ..

Solution – walking dynamics

Enhances SM fermion masses.
Reduces contributions to S parameter
Strongly coupled but eg spectrum
very different to QCD

Th

Theory space studied by LSD, LHC

Conformal in window $N_f^1 < N_f < N_f^2$

LHC sextet model

Sannino et al 2007

MWT model $N_f = N_c = 2$

3 groups within USQCD

- Syracuse/RPI/U. S. Denmark
- Lattice Strong Dynamics LSD
- Lattice Higgs Collaboration LHC

M

Syracuse/RPI/Denmark

Simon Catterall, Joel Giedt, Francesco Sannino, ..

Minimal Walking Technicolor model

$$N_f=2$$
 adj $SU(2)$

smallest N_f for (near) conformality?

■ Good place to test tools/techniques for studying such theories where naively need lattices L>1/\(\Lambda\)

$$\Lambda = e^{-\int \frac{dg}{\beta(g)}} \longleftarrow \text{ (very) small}$$

м

Minimal Walking TC

1.0 M hrs+ 0.7 M hrs BG/L

Plaquette discontinuity

Latent
Heat

0.1

0.05

O(100) parameter pts

83x16 Wilson

Transition in $m_\pi/m_
ho$

2.5

Catterall, Sannino,

Phys.Rev.D76:034504,2007

Catterall, Giedt, Sannino, Schneible,

JHEP 0811:009,2008.

Syracuse/RPI current projects

- Current 16^3 x32 clover, ϵ -regime
 - \Box Condensate $<\psi\psi>$ function of m_{PCAC}
- Exploit conformal map: R⁴ → S³xR and use finite size scaling

$$m_{\text{semi-finite geometry}} = \frac{2\pi\Delta}{L}$$

Lattice Strong Dynamics (LSD) Collaboration

http://www.yale.edu/LSD

James Osborn

Michael Cheng Ron Soltz Pavlos Vranas

Ron Babich
Rich Brower
Mike Clark
Claudio Rebbi
David Schaich

Joe Kiskis

Saul Cohen

Tom Appelquist George Fleming Ethan Neil

M

LSD Research Program

- Starting from QCD, study how the low energy structure varies as N_f increases towards the conformal window.
- Low energy structure includes:
 - Low energy constants of chiral perturbation theory: B, F
 - Light hadron spectrum
 - Static potential
 - Peskin-Takeuchi S parameter (L₁₀ in NLO ChiPT)

m

LSD configs done

■ SU(3), N_f=6, 24³x32 DWF

quark mass	no. configs
0.04	480
0.0266	390
0.02	350
0.0133	355

Currently – dedicated time on 4000 nodes QCDOC 20 M node hrs

Appelquist, Fleming, Neil, Phys. Rev. D79, 076010 (2009) Phys.Rev.Lett.100:171607,2008

Running coupling in SU(3) varying N_f

 $N_f=10 SU(3)$ fund. In conformal window ?

LHC collaboration

Kuti, Fodor, Holland, Nogradi, Schroeder UCSD, U Pacific

Current projects:

- □SU(3) with N_f=2 sextet quarks (dynamical overlap)
- \square SU(3) with N_f=4-16 fund quarks (staggered)
 - ullet ϵ -regime and chiral regime
- □ Running gauge coupling from Wilson loops
- □ Lattices 16⁴-28⁴, 3.6 M hrs CPU LQCD

At beta=3.7 Goldstone spectrum collapses
Dirac eigenvalues form almost degenerate
quartets (this is what we want)
p-regime chiral loop analysis and RMT work
simultaneously
stringent test of chiral phase
Nf=8,12? We are doing it now
p-regime test is increasingly difficult as
we approach the conformal window

Nf=4 staggered fermion (restored taste symmetry) and continuum limit reached

Lattice Technicolor picking up steam

3 out of 7 groups currently active internationally in lattice technicolor are part of USQCD

м

Supersymmetry SUSY

Motivations: another (popular!) extension of Standard Model:

- ☐ Higgs mass light
- Improves unification of couplings at MGUT=O(10¹⁵) GeV
- Necessary ingredient String Theory
 - AdSCFT quantum gravity and gauge theory

Lattice supersymmetry

- Old hard problem. New developments:
 - Certain models can be discretized preserving some SUSY exactly
- Most interesting: \mathcal{N} =4 SYM

AdSCFT correspondence:

Quantum SYM In 4D

Classical (super) gravity in AdS₅

$\mathcal{N}=4$ lattice theory

New ideas orbifolding/topological twisting USQCD international leadership position Kaplan, Catterall, Unsal arXiv:0903.4881, upcoming Phys. Rep.

Theory is local, gauge invariant, supersymmetric, free of doublers

Fermions and bosons live on links.

Gauge links include Scalars – complex Fermions equivalent to staggered

Codes

log(No. cores)

- C++ codes written from scratch
- Use MDP libraries in FermiQCD
- Standard lattice QCD algs. eg RHMC
- CatterallJHEP0901:040,2009

Example of AdSCFT

 SYM quantum mechanics describes black holes in AdS₅

Catterall, Wiseman Phys.Rev.D78:041502,2008 JHEP 0712:104,2007

0.25 M hrs LQCD

$\mathcal{N}=4$ program

- Explore/test AdSCFT conjecture
 - Non BPS quantities eg geometry impossible analytically
- Dual gauge theories always strongly coupled – great opportunity for lattice
 - □ D=2 SYM, BMN model
- Break $\mathcal{N}=4 \rightarrow$ better route to $\mathcal{N}=1$?

$\mathcal{N}=1$ super Yang-Mills

- Why ?
 - □ Core component Minimal Supersymmetric
 Standard Model MSSM
 - Stepping stone to super QCD (fermions/scalars in fundamental)

Learn about dynamical SUSY breaking, origin of soft breaking terms in MSSM

M

DWF for $\mathcal{N}=1$ SYM

- Cannot use tricks to make lattice theory exactly SUSY invariant.
- However only relevant SUSY violating operator is gaugino mass
- Absent for domain wall fermions DWF

Expect SUSY restored without fine tuning in continuum limit

.

USQCD groups:

- Endres (arXiv:0902.4267, arXiv:0810.0431)
- Giedt, Brower, Catterall, Fleming, Vranas (Phys.Rev.D79:025015,2009,arXiv:0807.2032)

Gaugino condensate

$$\langle \lambda \lambda \rangle \neq 0$$

Chiral extrapolation at β =2.3

×

Program for $\mathcal{N}=1$

- Chiral limit requires 16³x32xL_s with L_s > 48.
 40 M hrs BG/L used.
- Better implementations DWF ?
- Spectrum calcs
- Non-perturbative renormalization
- Super QCD –Need fine tune scalar sector.
 - □ Accomplish by reweighting. Need runs over large parameter space – O(100) harder! – future

Lattice SUSY: Emerging Field

м

Lattice BSM and experiment

- Current mode exploratory: develop tools/experience with non QCD theories
- Depending on LHC → hope focus on one or two theories of most interest in near future
- TC, SUSY, or something else? Remain agile ...
- Long run:
 - □ Employ more significant hardware resources
 - Hope to predict quantities useful to model builders eg S parameter, technihadron spectrum for TC, soft breaking terms in MSSM, ...

Summary

Exciting time for BSM studies on lattice!

year	percent BSM
2006-7	0.5
2007-8	4.2
2008-9	6.1
2009-10	7.1

Excludes 20 M hrs for N=1 SYM on BG/L and Comparable amount for LSD N_f =6 DWF about to start on QCDOC

- □ Lattice studies can provide crucial non-perturbative info on TC, SUSY, ...theories
- Current hardware/algs developed in QCD applicable.
- □ Exploratory and large scale simulations underway with LQCD resources